Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588902

RESUMO

2,3',4,4',5-pentachlorodiphenyl (PCB 118), a highly representative PCB congener, has been frequently detected in various environments, garnering much attention across the scientific community. The degradation of highly chlorinated PCBs by aerobic microorganisms is challenging due to their hydrophobicity and persistence. Herein, the biodegradation and adaptation mechanisms of Methylorubrum sp. ZY-1 to PCB 118 were comprehensively investigated using an integrative approach that combined degradation performance, product identification, metabolomic and transcriptomic analyses. The results indicated that the highest degradation efficiency of 0.5 mg L-1 PCB 118 reached 75.66% after seven days of inoculation when the bacteria dosage was 1.0 g L-1 at pH 7.0. A total of eleven products were identified during the degradation process, including low chlorinated PCBs, hydroxylated PCBs, and ring-opening products, suggesting that strain ZY-1 degraded PCB 118 through dechlorination, hydroxylation, and ring-opening pathways. Metabolomic analysis demonstrated that the energy supply and redox metabolism of strain ZY-1 was disturbed with exposure to PCB 118. To counteract this environmental stress, strain ZY-1 adjusted both the fatty acid synthesis and purine metabolism. The analysis of transcriptomics disclosed that multiple intracellular and extracellular oxidoreductases (e.g., monooxygenase, alpha/beta hydrolase and cytochrome P450) participated in the degradation of PCB 118. Besides, active efflux of PCB 118 and its degradation intermediates mediated by multiple transporters (e.g., MFS transporter and ABC transporter ATP-binding protein) might enhance bacterial resistance against these substances. These discoveries provided the inaugural insights into the biotransformation of strain ZY-1 to PCB 118 stress, illustrating its potential in the remediation of contaminated environments.


Assuntos
Biodegradação Ambiental , Metabolômica , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Transcriptoma
2.
Environ Health Perspect ; 131(7): 77006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37458712

RESUMO

BACKGROUND: Chronic lung injury and dysregulated cellular homeostasis in response to particulate matter (PM) exposure are closely associated with adverse health effects. However, an effective intervention for preventing the adverse health effects has not been developed. OBJECTIVES: This study aimed to evaluate the protective effects of nicotinamide mononucleotide (NMN) supplementation on lung injury and elucidate the mechanism by which NMN improved immune function following subchronic PM exposure. METHODS: Six-week-old male C57BL/6J mice were placed in a real-ambient PM exposure system or filtered air-equipped chambers (control) for 16 wk with or without NMN supplementation in drinking water (regarded as Con-H2O, Exp-H2O, Con-NMN and Exp-NMN groups, respectively) in Shijiazhuang City, China (n=20/group). The effects of NMN supplementation (500mg/kg) on PM-induced chronic pulmonary inflammation were assessed, and its mechanism was characterized using single-cell transcriptomic sequencing (scRNA-seq) analysis of whole lung cells. RESULTS: The NMN-treated mice exhibited higher NAD+ levels in multiple tissues. Following 16-wk PM exposure, slightly less pulmonary inflammation and less collagen deposition were noted in mice with NMN supplementation in response to real-ambient PM exposure (Exp-NMN group) compared with the Exp-H2O group (all p<0.05). Mouse lung tissue isolated from the Exp-NMN group was characterized by fewer neutrophils, monocyte-derived cells, fibroblasts, and myeloid-derived suppressor cells induced by subchronic PM exposure as detected by scRNA-seq transcriptomic analysis. The improved immune functions were further characterized by interleukin-17 signaling pathway inhibition and lower secretion of profibrotic cytokines in the Exp-NMN group compared with the Exp-H2O group. In addition, reduced proportions of differentiated myofibroblasts and profibrotic interstitial macrophages were identified in the NMN-supplemented mice in response to PM exposure. Furthermore, less immune function suppression and altered differentiation of pathological cell phenotypes NMN was related to intracellular lipid metabolism activation. DISCUSSION: Our novel findings suggest that NMN supplementation mitigated PM-induced lung injury by regulating immune functions and improving lipid metabolism in male mice, providing a putative intervention method for prevention of human health effects associated with PM exposure. https://doi.org/10.1289/EHP12259.


Assuntos
Lesão Pulmonar , Pneumonia , Camundongos , Masculino , Humanos , Animais , Mononucleotídeo de Nicotinamida/efeitos adversos , Mononucleotídeo de Nicotinamida/metabolismo , Material Particulado/toxicidade , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Suplementos Nutricionais
3.
Part Fibre Toxicol ; 20(1): 10, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069663

RESUMO

BACKGROUND: Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS: Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-ß-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS: These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 1 , Lesão Pulmonar , Camundongos , Animais , Material Particulado/toxicidade , Diabetes Mellitus Tipo 1/induzido quimicamente , Lesão Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Glicemia , Obesidade/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos
4.
Chemosphere ; 322: 138206, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828105

RESUMO

As one of the most frequently detected PCB congeners in human adipose tissue, 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180) has attracted much attention. However, PCB 180 is difficult to be directly utilized by microorganisms due to its hydrophobicity and obstinacy. Herein, methanol (5 mM) as a co-metabolic carbon source significantly stimulated the degradation performance of microbial consortium QY2 for PCB 180 (51.9% higher than that without methanol addition). Six metabolic products including low-chlorinated PCBs and chlorobenzoic acid were identified during co-metabolic degradation, denoting that PCB 180 was metabolized via dechlorination, hydroxylation and ring-opening pathways. The oxidative stress and apoptosis induced by PCB 180 were dose-dependent, but the addition of methanol effectively promoted the tolerance of consortium QY2 to resist unfavorable environmental stress. Additionally, the significant reduction of intracellular reactive oxygen species (ROS) and enhancement of cell viability during methanol co-metabolic degradation proved that the degradation was a detoxification process. The microbial community and network analyses suggested that the potential PCB 180 degrading bacteria in the community (e.g., Achromobacter, Cupriavidus, Methylobacterium and Sphingomonas) and functional abundance of metabolic pathways were selectively enriched by methanol, and the synergies among species whose richness increased after methanol addition might dominate the degradation process. These findings provide new insights into the biodegradation of PCB 180 by microbial consortium.


Assuntos
Bifenilos Policlorados , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Metanol , Consórcios Microbianos , Biodegradação Ambiental , Redes e Vias Metabólicas
5.
Arch Toxicol ; 97(4): 1133-1146, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806895

RESUMO

Intestinal organoid may serve as an alternative model for toxicity testing. However, the linkage between specific morphological alterations in organoids and chemical-induced toxicity has yet to be defined. Here, we generated C57BL/6 mouse intestinal organoids and conducted a morphology-based analysis on chemical-induced toxicity. Alterations in morphology were characterized by large spheroids, hyperplastic organoids, small spheroids, and protrusion-loss organoids, which responded in a concentration-dependent manner to the treatment of four metal(loid)s including cadmium (Cd), lead (Pb), hexavalent chromium (Cr-VI), and inorganic trivalent arsenic (iAs-III). Notably, alterations in organoid morphology characterized by abnormal morphology rate were correlated with specific intestinal toxic effects, including reduction in cell viability and differentiation, induction of apoptosis, dysfunction of mucus production, and damage to epithelial barrier upon repeated administration. The benchmark dose (BMDL10) values of morphological alterations (0.007-0.195 µM) were lower than those of conventional bioassays (0.010-0.907 µM). We also established that the morphologic features of organoids upon Cd, Pb, Cr-VI, or iAs-III treatment were metal specific, and mediated by Wnt, bone morphogenetic protein, apoptosis induction, and Notch signaling pathways, respectively. Collectively, these findings provide novel insights into the relevance of morphological alterations in organoids to specific toxic endpoints and identify specific morphological alterations as potential indicators of enterotoxicity.


Assuntos
Cádmio , Chumbo , Camundongos , Animais , Camundongos Endogâmicos C57BL , Intestinos , Organoides , Mucosa Intestinal
6.
Artigo em Inglês | MEDLINE | ID: mdl-36459609

RESUMO

Understanding 3-D scene geometry from videos is a fundamental topic in visual perception. In this article, we propose an unsupervised monocular depth and camera motion estimation framework using unlabeled monocular videos to overcome the limitation of acquiring per-pixel ground-truth depth at scale. The photometric loss couples the depth network and pose network together and is essential to the unsupervised method, which is based on warping nearby views to target using the estimated depth and pose. We introduce the channelwise attention mechanism to dig into the relationship between channels and introduce the spatialwise attention mechanism to utilize the inner-spatial relationship of features. Both of them applied in depth networks can better activate the feature information between different convolutional layers and extract more discriminative features. In addition, we apply the Sobel boundary to our edge-aware smoothness for more reasonable accuracy, and clearer boundaries and structures. All of these help to close the gap with fully supervised methods and show high-quality state-of-the-art results on the KITTI benchmark and great generalization performance on the Make3D dataset.

7.
Environ Pollut ; 313: 120120, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36084739

RESUMO

The influence of biochar on the biodegradation of persistent organic pollutants (POPs) has been extensively studied. However, the underlying mechanisms behind the response of functional microbial consortia to biochar remain poorly understood. Herein, we systematically explored the effect of biochar on 2,2',4,4'-tetrabrominated ether (BDE-47) biodegradation, and investigated the interaction and assembly mechanism of the functional bacterial consortium QY2. The results revealed that the biodegradation efficiency of QY2 for BDE-47 increased from 53.85% to 94.11% after the addition of biochar. Fluorescence excitation-emission matrix and electrochemical analysis showed that biochar-attached biofilms were rich in redox-active extracellular polymeric substances (EPS, 3.03-fold higher than free cell), whose strong interaction with biochar facilitated the electron transfer of the biofilm, thus enhancing the debromination degradation of BDE-47. Meanwhile, the assembly model and molecular ecological networks analysis indicated that bacterial community assembly in biofilms was more driven by deterministic processes (environmental selection >75.00%) upon biochar stimulation and exhibited closer interspecific cooperative interactions, leading to higher biodiversity and broader habitat niche breadth for QY2 in response to BDE-47 disturbance. Potential degraders (Methylobacterium, Sphingomonas, Microbacterium) and electrochemical bacteria (Ochrobactrum) were selectively enriched, whose role as keystone bacteria may be participated in biofilm formation and redox-active EPS secretion (r > 0.5, P < 0.05). These findings deepen the understanding of the mechanisms by which biochar promotes microbial degradation of PBDEs and provided a theoretical basis for better regulation of functional bacterial communities during environmental remediation.


Assuntos
Éteres Difenil Halogenados , Poluentes Orgânicos Persistentes , Bactérias/metabolismo , Biodegradação Ambiental , Carvão Vegetal , Éteres Difenil Halogenados/metabolismo , Interações Microbianas
8.
Part Fibre Toxicol ; 19(1): 42, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739565

RESUMO

BACKGROUND: Long-term exposure to fine particulate matter (PM2.5) increases susceptibility to chronic respiratory diseases, including inflammation and interstitial fibrosis. However, the regulatory mechanisms by which the immune response mediates the initiation of pulmonary fibrosis has yet to be fully characterized. This study aimed to illustrate the interplay between different cell clusters and key pathways in triggering chronic lung injuries in mice following PM exposure. RESULTS: Six-week-old C57BL/6J male mice were exposed to PM or filtered air for 16 weeks in a real-ambient PM exposure system in Shijiazhuang, China. The transcriptional profiles of whole lung cells following sub-chronic PM exposure were characterized by analysis of single-cell transcriptomics. The IL-17A knockout (IL-17A-/-) mouse model was utilized to determine whether the IL-17 signaling pathway mediated immune dysregulation in PM-induced chronic lung injuries. After 16-week PM exposure, chronic lung injuries with excessive collagen deposition and increased fibroblasts, neutrophils, and monocytes were noted concurrent with a decreased number of major classes of immune cells. Single-cell analysis showed that activation of the IL-17 signaling pathway was involved in the progression of pulmonary fibrosis upon sub-chronic PM exposure. Depletion of IL-17A led to significant decline in chronic lung injuries, which was mainly triggered by reduced recruitment of myeloid-derived suppressor cells (MDSCs) and downregulation of TGF-ß. CONCLUSION: These novel findings demonstrate that immunosuppression via the IL-17A pathway plays a critical role in the initiation of chronic lung injuries upon sub-chronic PM exposure.


Assuntos
Interleucina-17 , Lesão Pulmonar , Fibrose Pulmonar , Animais , Interleucina-17/genética , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/análise , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transcriptoma
9.
Environ Pollut ; 302: 119095, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247509

RESUMO

It is of great significance to explore the remediation pattern in actual heavy metal (HM) contaminated sites. The field trial was carried out to research the remediation effect of biochar near a lead-zinc smelter in Feng County, China, under the rotation condition of different crops. This kind of cultivation mode is very representative in northern of China. And the pattern of production and restoration is suitable for scarce land resources and large food demand in China. The changes of soil physiochemical properties with the biochar addition, crop growth and the accumulated HMs by crops were focused on. The results showed the biochar application was excellent in improving soil nutrient elements and crop growth. The contents of TK were more obvious than those of TN and TP, with an increase of 2.6%-28.2% compared with the controls (without the addition of biochar). The yield of first season crops, i.e., soybean and corn, increased by 30%-42% and 34%-61%, respectively, and the second season crops, i.e., rape and wheat, with the increment of 25%-41% and 9%-29%, respectively. The availability forms of Cd and Pb decreased by 1.07-10.0% and 2.92-8.35%, respectively. While the improvement on the status of the HMs accumulated by crops was disappointing. The contents of HMs accumulated by crops increased to varying degrees (e.g., Pb and Zn in root, Cu and Pb in grain, and Cd in stems and leaves). Moreover, the concentrations of HMs in seeds of crops were higher than the limited levels given by the Chinese directive. Considering the results of the study and food safety, it is suggested to change the nature of the land around the smelter into woodland or construction land to prohibit the cultivation of food crops in this area.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Carvão Vegetal/química , China , Metais Pesados/análise , Estações do Ano , Solo/química , Poluentes do Solo/análise , Zinco/análise
10.
Rev Sci Instrum ; 93(2): 025004, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232170

RESUMO

The multidimensional motion ultrasonic motor with a single spherical stator is studied in this paper. It has the characteristics of miniaturization and can be used in precision motion applications. By bonding six identical pieces of piezoelectric ceramic onto the stator and applying the voltage signal of high frequency, the deformation of the inverse piezoelectric effect is used to excite the stator yaw vibration mode. The orthogonal superposition of the modes of the spherical stator on the driving foot produces elliptical trajectory around X, Y, and Z directions by different excitation methods. According to the yaw vibration mode of the spherical stator, 12 driving feet are designed to drive the rotation of the spherical rotor. The structure and mechanical characteristics of the motor are simulated by using simulation software, and the transient response of the stator driving foot was obtained, which proved its feasibility. Finally, the output performance of the motor in actual operation is given through experiments, which provides a new reference scheme in the field of precise multi-degree-of-freedom motion. At a voltage of 100 V and a frequency of 26.7 kHz, the prototype has a no-load speed of 73, 70, and 114 rpm around X, Y, and Z axes, respectively.


Assuntos
Ultrassom , Vibração , Desenho de Equipamento , Miniaturização , Rotação
11.
Ultrasonics ; 119: 106632, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34717143

RESUMO

Since the temperature has a great effect on the service behavior of the ultrasonic motor, high temperature will affect its mechanical characteristics and service life. This article is on a model of a piezoelectric driven three-stator multi-degree-of-freedom ultrasonic motor. Firstly, the motion mechanism is analyzed, and the main causes of temperature rise are determined to be friction heat generation and vibration heat generation. Then, the theoretical model of temperature rise is built, and the temperature rise characteristics of the ultrasonic motor are simulated and analyzed by establishing a three-dimensional transient temperature field model. Finally, it is verified by temperature test experiment. The results show that the simulation analyses are consistent with the experimental results, and this analysis can correctly reflect the temperature rise characteristics of the motor. It provides a reference for further seeking the effect of the body temperature rise on the service behavior of the ultrasonic motor and improving the operating characteristics of the ultrasonic motor.

12.
Sci Total Environ ; 805: 150270, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536863

RESUMO

Polychlorinated biphenyls (PCBs), together with 11 other organic compounds, were initially listed as persistent organic pollutants (POPs) by the Stockholm Convention because of their potential threat to ecosystems and humans. In China, many monitoring studies have been undertaken to reveal the level of PCBs in environment since 2005 due to the introduced stricter environmental regulations. However, there are still significant gaps in understanding the overall spatial and temporal distributions of PCBs in China. This review systematically discusses the occurrence and distribution of PCBs in environmental matrices, organisms, and humans in China. Results showed that PCB contamination in northern and southern China was not significantly different, but the PCB levels in East China were commonly higher than those in West China, which might have been due to the widespread consumption of PCBs and intensive human activities in East China. Serious PCB contamination was found in e-waste disassembling areas (e.g., Taizhou of Zhejiang Province and Qingyuan and Guiyu of Guangdong Province). Higher PCB concentrations were also chronicled in megalopolises and industrial clusters. The unintentionally produced PCBs (UP-PCBs) formed during industrial thermal processes may play an increasingly significant role in PCB pollution in China. Low PCB levels were recorded in rural and underdeveloped districts, particularly in remote and high-altitude localities such as the Tibetan Plateau and the South China Sea. However, these data are limited. Human exposure to PCBs is closely related to the characteristics of environmental pollution. This review also discusses existing issues and future research prospects on PCBs in China. For instance, the accumulation characteristics and migration regularities of PCBs in food webs should be further studied. More investigations should be undertaken to assess the quantitative relationship between external and internal exposure to PCBs. For example, bioaccessibility and bioavailability studies should be supplemented to evaluate human health risks more accurately.


Assuntos
Bifenilos Policlorados , China , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Cadeia Alimentar , Humanos , Bifenilos Policlorados/análise
13.
Sci Total Environ ; 788: 147774, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34023604

RESUMO

2,3',4,4',5-pentachlorodiphenyl (PCB 118), a dioxin-like PCB, is often detected in the environment and is difficult to be aerobically biodegraded. In this study, a novel polychlorinated biphenyl degrading consortium GYB1 that can metabolize PCB 118 was successfully obtained by acclimatization process. To enhance the application performance of free bacterial cells, consortium GYB1 was immobilized with sodium alginate and biochar to prepare SC-GYB1 beads. Orthogonal experiments indicated that the optimal composition of the beads (0.2 g) was 2.0% sodium alginate (SA) content, 2.0% wet weight of cells and 1.5% biochar content, which can degrade 50.50% PCB 118 in 5 d. Immobilization shortened the degradation half-life of 1 mg/L PCB 118 by consortium GYB1 from 8.14 d to 3.79 d and made the beads more robust to respond to environmental stress. The SC-GYB1 beads could even keep considerable PCB degradation ability under 200 mg/L Cd2+ stress. According to 16S rRNA gene analysis, Pseudomonas and Stenotrophomonas played the dominant role in consortium GYB1. And embedding obviously altered the community structure and the key bacterial genera during the PCB removal process. Therefore, the immobilization of bacteria consortium by sodium alginate-biochar enhanced the biodegradation of PCB 118, which will provide new insights into functional microorganisms' actual application for PCB restoration.


Assuntos
Alginatos , Carvão Vegetal , Biodegradação Ambiental , RNA Ribossômico 16S
14.
J Hazard Mater ; 415: 125698, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773249

RESUMO

2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), frequently detected in the environment, is arduous to be removed by conventional biological treatments due to its persistence and toxicity. Herein effects of methanol as a co-metabolic substrate on the biodegradation of BDE-47 was systematically studied by a functional bacterial consortium QY2, constructed through long-term and successive acclimation from indigenous microorganisms. The results revealed that BDE-47 (0.25 mg/L) was completely removed within 7 days in the 2.5 mM methanol treatment group, and its degradation efficiency was 3.26 times higher than that without methanol treatment. The addition of methanol dramatically accelerated the debromination, hydroxylation and phenyl ether bond breakage of BDE-47 by QY2. However, excessive methanol (>5 mM) combined with BDE-47 had strong stress on microbial cells, including significant (p < 0.05) increase of reactive oxygen species level, superoxide dismutase activity, catalase activity and malondialdehyde content, even causing 20.65% cell apoptosis and 11.27% death. It was worth noting that the changes of QY2 community structure remained relatively stable after adding methanol, presumably attributed to the important role of the genus Methylobacterium in maintaining the functional and structural stability of QY2. This study deepened our understanding of how methanol as co-metabolite substances stimulated the biodegradation of BDE-47 by microbial consortium.


Assuntos
Éteres Difenil Halogenados , Metanol , Bactérias , Biodegradação Ambiental , Éteres Difenil Halogenados/toxicidade
15.
J Hazard Mater ; 414: 125555, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33684814

RESUMO

Sulfurized nanoscale zerovalent iron (S-nZVI) has been widely reported to be able to quickly remove heavy metals/persistent organic pollutants, but the limited understanding of the complicated removal process of heavy metals-organic combined pollutants restricts the application of S-nZVI. Here, we demonstrate that there is significant difference in the effectiveness of S-nZVI for removing single pollutant and complex pollutants. The removal kinetic constant (kobs) of heavy metals by S-nZVI followed a sequence of Cr(VI)>Pb(II)>Ni(II)>Cd(II) with or without polybrominated diphenyl ethers (PBDEs). While the capacity of co-existing cations increasing the kobs of PBDEs followed the order: Ni(II)>Pb(II)>Cd(II), and the co-existence of Cr(VI) anion inhibited the reduction of PBDE by S-nZVI because the generated Cr-Fe precipitate hindered the electron transfer. The de-passivation process on S-nZVI surface by Cd(II) ions slightly accelerated the transformation rate of electron. Nevertheless, the co-existing Pb(II) significantly accelerated the transformation of BDE-209 via the galvanic effect from the generated Pb0/Fe0 bimetal. Interestingly, the kobs of BDE-47 in Ni(II)/S-nZVI system was 5.51 times higher than that of Pb(II)/S-nZVI system, implying that an atomic hydrogen mechanism dominated the reduction of BDE-47 by Ni(II)/S-nZVI. In conclusion, the results provided a deep comprehending of removal mechanism of heavy metal-organic complex pollutants by S-nZVI.

16.
Micromachines (Basel) ; 12(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557326

RESUMO

A novel piezoelectric actuator using a two-stage flexure hinge structure is proposed in this paper, which is used in a compact and high-precision electromechanical field. The two-stage flexure hinge structure is used to provide horizontal thrust and vertical clamping force to the driving feet, which solves the problems of unstable clamping force and insufficient load capacity in traditional stick-slip piezoelectric actuators. Firstly, the main structure of the driver and the working process under the triangular wave excitation voltage are briefly introduced. Secondly, after many simulation tests, the structure of the actuator is optimized and the stability of the structure in providing clamping force is verified. Finally, through the research of the operating performance, when the amplitude is 150 V and the frequency is 3.25 kHz as the excitation source, the maximum speed can reach 338 mm/s and can bear about 3 kg load. It can be seen from the analysis that the two-stage flexure hinge structure can improve the displacement trajectory.

17.
Environ Sci Pollut Res Int ; 27(35): 43505-43513, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32592060

RESUMO

Soil contaminated with potentially toxic metals (PTMs) has being a global environmental issue, which needs to be addressed on the priority basis. Fly ash (FA) is a kind of low-cost alkaline materials, which has been widely used in remediation of soil contaminated by PTMs, while the effects of FA on the stability for PTMs in contaminated farmland soil are still not clearly evaluated. In this study, cadmium (Cd) contaminated soil samples, collected from Shaanxi (SX), Hubei (HB), and Zhejiang (ZJ) province of China, were amended with FA addition (0, 1%, 2.5%, 5%, and 10% dose), and 1-year changes of Cd availability in soil samples were focused on. In addition, biological assessment method through pot culture was carried out to evaluate the reuse potential of Cd contaminated soils amended by FA. The result indicated that FA had a notable impact on decreasing the Cd mobility of SX soil (sand type), with 18.2~52.1% reduction in the DTPA extractable solution, followed by HB soil with 5.9~16.7% reduction, but no obvious effect of FA on ZJ soil (clay type) was observed. Furthermore, the results of pot experiment revealed that FA application could increase the biomass of Chinese cabbage. However, the DTPA extractable Cd in soils after planation and the Cd accumulation of plant increased. The results revealed that FA was not a promising soil stabilizer to immobilize HMs in Cd contaminated soil, and careful consideration should be given to Cd contaminated soils with FA restoration especially in their using for farmland productive due to the remaining risk of Cd bioavailability. These results also contributed to provide references for similar soil pollution remediation.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Cinza de Carvão , Metais Pesados/análise , Solo , Poluentes do Solo/análise
18.
Environ Pollut ; 261: 114213, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32408418

RESUMO

Brassica juncea L. is an attractive species in PTMs contaminated soil remediation ascribing to its high tolerance under stress and great accumulation capacity of metals. To identify the potential Cd/Zn accumulators from numerous different Chinese mustard cultivars for practical phytoremediation is a promising strategy in China. In present work, a pot experiment involving elevated Cd/Zn concentrations was performed among 21 cultivars. Regarding physiological and biochemical indicators under Cd/Zn stress, principal component analysis and cluster analysis were used for cultivar tolerance evaluation and classification. Results showed that BJ (Bao Jie, var. involutus) cultivar was distinguished as a potential phytoremediation candidate comparing with other cultivars. Moreover, BJ accumulated the maximum Cd content of 63.85 and 77.29 mg kg-1 DW in shoots and roots, respectively, and the maximum Zn uptake by BJ were 6693 and 4777 mg kg-1 DW in shoots and roots, respectively. Accordingly, BJ had the highest Cd/Zn tolerance, remarkable accumulation and translocation capacity (accumulation factor (AF) > 1 for Cd and Zn; translocation factor (TF) > 0.8 for Cd and TF > 1 for Zn). In addition, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities of the mustard increased initially under low Cd/Zn stress as compared to the control and then declined dramatically with the increasing metals exposure concentration. Therefore, the antioxidant enzymes may play a protective role against reactive oxygen species (ROS) under low Cd/Zn stress, whereas the defense system might be collapsed under relatively high Cd/Zn stress. Furthermore, the enhanced Cd/Zn exposure led to an increase in malondialdehyde (MDA) content in the mustard cultivars, indicating that Cd/Zn had induced more severe oxidative stress and higher degree of lipid peroxidation had occurred. The present investigation results indicated that BJ (Bao Jie, var. involutus), as a native cultivar, can be further applied in the field trials of phytoremediation practices in contaminated soil.


Assuntos
Cádmio/metabolismo , Mostardeira/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Antioxidantes , Biodegradação Ambiental , Cádmio/análise , China , Raízes de Plantas , Poluentes do Solo/análise , Zinco/análise
19.
J Hazard Mater ; 374: 401-411, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029745

RESUMO

We assessed the efficacy of Ca-bentonite (CB) alone and combined with Ca-hydroxide (CH), tobacco biochar (TB), and zeolite (ZL) aiming to immobilize Cu and Pb and decrease their bioavailability and uptake by pak choi followed by maize in a mining contaminated soil. The CB alone was able to decrease the availability and uptake of Cu and Pb by pak choi and maize. The mono- and multi-combination of CH, TB, and ZL with CB showed contradictory impact on the availability and uptake of Cu and Pb as compared to the mono-application of CB. The combination of CB with ZL and CH + ZL reduced the uptake of Pb by pak choi and maize, while the combination of CB with TB and ZL reduced the uptake of Cu by pak choi and maize as compared to the mono-application of CB. The co-application of CB with CH increased the phytoextraction of Cu by maize and Pb by pak choi shoots as compared to the mono-application of CB. We conclude that modified clays such as CB alone or combined with ZL, TB, and/or CH might be suitable candidates for phytomanagement of Cu and Pb contaminated soils.


Assuntos
Carvão Vegetal/química , Cobre/metabolismo , Chumbo/metabolismo , Mineração , Poluentes do Solo/metabolismo , Bentonita/química , Cálcio/química , Hidróxido de Cálcio/química , China , Clorofila/química , Ouro , Concentração de Íons de Hidrogênio , Solo , Nicotiana , Zea mays , Zeolitas/química
20.
Bioresour Technol ; 249: 487-493, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29073559

RESUMO

This study aimed to evaluate the chemical forms, behavior and environmental risk of heavy metal (HMs) Zn, Pb and Cd in phytoremediation residue (PMR) pyrolyzed at 350 °C, 550 °C and 750 °C, respectively. The behavior of HMs variation during the PMR pyrolysis process was analyzed and the potential HMs environmental risk of phytoremediation residue biochars (PMB) was assessed which was seldom investigated before. The results showed that the pyrolysis temperature increase decreased the soluble/exchangeable HMs fraction and alleviated the HMs bioavailability. When the temperature was over 550 °C, the adsorbed Zn(II), Pb(II) and Cd(II) were turned into oxides forms and concentrated in PMB with more stable forms exhibiting lower risk assessment code and potential ecological risk index. The ecotoxicity test showed higher pyrolysis temperature favored the reduction of PMB ecotoxicity. It is suggested that pyrolysis temperature above 550°C may be suitable for thermal treatment of PMR with acceptable environmental risk.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Chumbo , Metais Pesados , Temperatura , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA